

Draft US MIL-STD WB ALE Net Model and
Traffic Delivery Measurement
HF Industry Association Meeting
2 / 12 / 2015, San Diego, CA

THIS INFORMATION IS NOT EXPORT CONTROLLED

THIS INFORMATION IS APPROVED FOR RELEASE WITHOUT EXPORT RESTRICTIONS IN ACCORDANCE WITH A REVIEW OF THE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR), 22CFR 120-130, AND THE EXPORT ADMINISTRATION REGULATIONS (EAR) 15 CFR 730-774.

- The draft MIL-STD wideband ALE standard proposes a fast asynchronous scanning mode and features waveforms based on those defined in MIL-STD-188-110C Appendix D
- The draft ALE standard is being designed to support latency sensitive traffic such as IP data
- This work implements a model of a draft MIL-STD wideband ALE network with which traffic delivery characteristics may be measured

Background

- MIL-STD-188-141C Appendix A
 - 2nd Generation Automatic Link Establishment (2G ALE)
 - Asynchronous fast scanning
 - Broadcasts a leading call for duration of at least one scan rotation followed by linking handshake
 - Long link setup time for data networks
 - No integrated ARQ protocol, must use separate data-link layer such as \$5066
- STANAG 4538 Annex C FLSU
 - 3rd Generation Automatic Link Establishment (3G ALE)
 - Synchronous scanning, slower scan rate than 2G ALE
 - Can be preempted by incoming call while scanning to call channel
 - Typically shorter link setup time compared to 2G, more desirable for data networks
 - Defines integrated data-link ARQ protocols (LDL, HDL)

Background 2

- MIL-STD-188-110C
 - Appendix C defines serial-tone broadcast waveforms representing the highest speeds achievable within 3kHz, ca. 2000, with a maximum of 12.8kbps (110B)
 - Appendix D defines a suite of serial-tone broadcast waveforms up to 24kHz with a maximum bitrate of 120kbps
 - Developed collaboratively between Rockwell Collins and Harris
- With wider-than-3kHz waveforms now available, HF links intending to use these waveforms must also now negotiate a bandwidth and offset within the channel allocation during link establishment to maximize channel capacity (avoid interference)
- Neither 2G ALE nor 3G ALE currently have native mechanisms with which to negotiate channel bandwidths and offsets

Harris 1st Generation Adaptive Wideband

- Based on S4538 3G ALE FLSU
- Augments link establishment protocol with bandwidth and offset negotiation phase
- RF-7800H radio provides 110C xD waveforms used by S5066 within RF-6760W-HF Wireless Messaging Terminal for ARQ data link
- Provides adaptive capability, adjusting channel bandwidth and offset in order to avoid interference, minimizing bit errors, maximizing use of overall system capacity
- Channels sensed for local interference during scan and just before negotiation handshake
 - Negotiated bandwidth based on combined local interference environments

Draft MIL-STD Wideband ALE

- Currently under development
- Two interoperable linking modes making different trades of linking speed against robustness
- Asynchronous and synchronous scanning
- Asynchronous capture sequence based on 110C xD TLC block
 - 13.3 millisecond capture probe
 - User defined channel dwell time; longer dwell more capture probe detection opportunities
- Linking PDUs based on 110C xD data waveform
 - 80-bit PDU containing addressing and bandwidth negotiation fields
 - 240 millisecond preamble distinguishes between:
 - 750bps Fast WALE 106.67ms
 - 75bps Deep WALE 1.067s
- Designed to negotiate wideband links natively

Motivation

- The advertisement of higher bandwidths and bitrates invariably brings the expectation that more complex and network intensive applications and services may be used over HF
- In order to sufficiently support latency sensitive and bandwidth intensive traffic over HF networks, over the air protocols as well as individual node behavior must be carefully designed
 - Prohibitive to correctly design without substantial simulation
 - Best studied as an entire network, from traffic generation to on-air interaction
- To that end, in order to study the draft MIL-STD WB ALE, a model network was created
 - Generally supports link establishment so that other candidates can be studied and compared

Multi-node Traffic Model

Goal: Measure message service time against traffic load

- Focused on linking protocol's performance in a network
 - Network performance affected by:
 - Dwell time
 - Linking PDU lengths length of channel occupancy before detection
 - PDU pDet performance
 - WALE pDet performance simulation of individual links has been studied
 - And a whole bunch of non-protocol factors
 - Node persistence
 - Link traffic detection
 - Traffic model, arrival size and lifetime
 - Queued traffic servicing
 - Link traffic performance
 - Becomes a significant multivariate problem (CSMA/x, PDU pDet, pFalse, data-link performance)

Current Model Implementation

- Simplified PHY model
 - Use pDet performance for individual PDU decodes
 - If collision, no detection
 - Link traffic progress is paused during collision (assumes ARQ)
- Traffic model
 - Poisson distributed arrival
 - Fixed message size
 - Traffic has infinite life time (Erlang C)
- Star and Mesh network configurations
- CSMA considerations Actually traffic sensing
 - Sort of P-persistent
 - · An amount of holdoff after link termination
 - Collision avoidance
 - Will only transmit on a channel observed to be free with stations not involved in recent previous link requests
 - However, will transmit immediately when channel observed to be free (not a nice network neighbor characteristic)

Implementation cont'd

- Station's traffic queue is serviced FIFO
 - First viable traffic request is serviced (remote station free, request not in pended state)
 - If link attempt fails
 - 1. Traffic request is pended for an amount of time
 - 2. Next link attempt held off for an amount of time
 - 3. Next viable traffic request is serviced after hold off expires
- When linked, stations will reciprocate traffic requests
 - Stations are courteous, will wait for reciprocal traffic before sending again
- When traffic requests exhausted, stations wait one second before returning to scan

Net Message Delivery Latency vs. Traffic Load 10-nodes - small messages, perfect channel

For illustration only – not for analysis

Model Enhancements

- PHY model
 - Enhanced linking PDU model incorporating varying SNR profile
 - Link traffic modeled with statistical error distribution profiles
- Traffic model
 - Can enhance with Erlang distributed traffic size/arrival
 - Better yet, model with actual traffic profile
- Can be used to study individual node network behavior
- Refine traffic request service schemes
- Model currently written in C
 - ~45s to simulate 2 hours on Intel i7 ~2.5GHz
 - Port to more substantial simulation environment

Questions?