

MILITARY & GOVERNMENT

RF Measurement and Management in Your World

TECHNOLOGIES GROUP

Introduction

Military Sales Manager

- Kevin King
- (440) 519-2272 (office)
- (440) 668-3829 (mobile)
- <u>kking@bird-technologies.com</u>
- United States Navy Retired Chief Petty Officer

Application Engineer

- Bill Tobin
- (440) 519-2176 (office)
- (440) 688-3829 (mobile)
- btobin@bird-technologies.com

Government and Military Market

- •Bird Technologies Group has a strong history of serving the Military
- Product Development for Military Troops Since WWII
- •Today, Bird has a Global presence by providing products for foreign militaries.

Military Applications

- Field testing Tactical Radio Systems
- Flight line and avionics systems
- Custom built filters and sensors, power measurement, resistive products and subassemblies.
- Integrated antenna analysis.

Modern Radio

- JTRS Software-Defined Radio
- Complex Modulation Schemes
- Smaller Radios
- Greater Functionality

Complex Signals

- Wider Dynamic Range
- More modulation schemes
- Encryption
- Combined signals
- Digital Waveforms

We Will Discuss

- Square law detectors
- Transmatch power measurements
- Comparing power measurements
- Customization of square law detectors

Square Law Theory

Conventional

- Peak Power Detection
- All 3 Regions
 - Square law
 - Transition
 - Linear

• Inaccuracy with complex signals

Operating completely in the square law region gives us a response of:

$V_{out} = \left(\frac{Vin}{5.77}\right)^2$

- This Characteristic Will Hold True Regardless Of The Input Waveform Characteristic.
- Dynamic Range Of This Approach Is Bound By Approximately -20dBm On The High Side, And Noise On The Low Side.

Thermoelectric Converters

- Similar to Calorimetric Instruments, RF Power is Proportional to Heat.
- May be Calibrated using DC Substitution Techniques.
- Wide Dynamic Range.
- Power Measurement Includes Fundamental and All Harmonics.
- Typically Present a Low VSWR to the Transmission System.
- Independent of Modulation Format.
- Small size.

Measurement Comparison

Structure

- Compare techniques to a calorimeter
 - Square Law
 - Conventional
 - Thermal
- Compared in three situations
 - -CW
 - 8 VSB
 - COFDM

Measurement Results, CW Signal

Measurement Results, 8-VSB

TECHNOLOGIES GROUP

Integrated Diode Power Meter Error Budget

TECHNOLOGIES GROUP

1	Directional Coupler Frequency Response Error	+/-3.0%	Includes frequency response error for forward and reflected measurements. Does not include directivity effects on reflected channel.
2	Detector Linearity	+/- 1.5%	Includes detector linearity over a 20 dB dynamic range
3	Instrumentation Uncertainty and Noise	+/-1.5%	
4	Temperature Drift	+/-1.5%	Assumes a 7 degree C ambient temperature range
5	Calibration Standards Uncertainty	+/- 0.75%	Uncertainty of working standards on production floor
	Worse Case Error	+/-8.25%	
	RSS (Probable) Error	+/-4.04%	Error sources may be treated as independent variables

Error Analysis of Thermal Power Measurement System

	Error Component	Error Value	
1	Instrumentation Uncertainty & Noise	± 1.5%	
2	Power Reference Uncertainty	± 1.2%	Thermal power meters require the use of a reference oscillator. This is typically a 50 MHz, 1 mW source.
3	Calibration Factor Uncertainty	± 3%	The accuracy to which specified sensor calibrations are known.
4	Mismatch Uncertainty (based upon a source VSWR of 1.5 and a load VSWR of 1.2)	± 4%	Based upon a source VSWR (directional coupler side arm) of 1.5, and a sensor VSWR of 1.2.
5	Attenuation Factor Uncertainty	± 1%	Using a 50dB Directional Coupler and an HP8753D Network Analyzer, the best possible attenuation measurement is ± .05dB.
6	Linearity	± 1%	
7	Temperature Drift	± 1.6%	Assuming a 7°C total spread in ambient temperature at measurement point.
	Case Error ± 13.3% ble Error ± 5.8%		

Customization

Requirements

- Compact
- Robust
- Speed
- Accuracy
- Size

Configurable Power Sensor

- 0-5 Vdc output, linear with power
- Custom connectors
 - RF connectors
 - DC connectors
- Custom Application
 - Power Level
 - Frequency

Conclusion

- Square Law detectors provide accuracy in software defined radio
- Ideal for situations requiring a high level of resilience
- The CPS can be customized to fit any application

Questions?

Bill Tobin Bird Technologies Group <u>btobin@birdrf.com</u> 440-519-2176

