

STANAG 5066 Profile for High-Frequency Data Communications:

ROADMAP / STATUS

Presented to the High-Frequency Industry Association 12 January 2009

Prepared by
Donald G. Kallgren
don.kallgren@nc3a.nato.int
+31 70 374 3442
Capability-Area-Team 9:
Networking and Information Infrastructure

STANAG 5066 Edition 1- Scope

Main body provides overview of the structure of the

- List of Annexes
 - A: Subnetwork Interfa
 - Channel
- urrent Status: Ratifiec. BFEM66, USAF SCOPE COMMAND)
 - Ilogical (Mandatory)

Rates above 2400 Bit/s (info only)

intation Guide and Notes (info only)

Messages and Procedures for Frequency Change (info only)

STANAG 5066 Edition 2

(<u>formerly Edition 1 Amendment 1</u>) - Scope

- Main body provides overview
- Forwarded 26 Sept 2005 List of Anna randatory

ce Control Interface

Lawork Client Definitions

- Waveforms for Data Rates above 2400 Bit/s
- Implementation Guide and Notes
- Messages and Procedures for Frequency Change

(Mandatory)

(Mandatory)

(info only)

(Mandatory)

(info only)

(info only)

(info only)

STANAG 5066 Edition 3 (formerly Edition 2) -Scope

- Main body provides overview of the structure of the Provided Pr
- List of Annexes
 - Subnetwork Interface Sub-layer
 - B: Channel Access Sub-layer
 - C: Data Transfer Sub-layer
 - voadmap Endorsed by Interface between Da Communicati

OS-COMMS AHWG Oct 2005 1 work continuing

(info only) (info only)

vvireless-Token-Ring-Protocol (info only)

reserved

- Addressing Guidance (info only)
- Integration with Internet Protocol (IP) Networks (info only)

Edition 3 (formerly Ed. 2) Overview

Annex F, N, O:
IP-over-HF Networking, trunking
& subnet relay

Annex J:

Overview of MAClayer functionality Relationship to other layers / annexes

Annexes K, L, M: Tailored MAC-layer functionality for specific requirements:

Annex K: Random-Access Protocols

Annex L: HF Wireless Token Protocol (shown)
Annex M: reserved (e.g., for adaptive TDMA)

Summary – Way Ahead

- Annex J Media Access Control Overview
 - Working Draft 2 reviewed by BLOSCOMMS, no reviewer objections, ready
- Annex K
 Random-Access Control Protocols
 - Working Draft 2 reviewed by BLOSCOMMS, no reviewer objections, ready
- Annex L High-Frequency Wireless-Token-Ring-Protocol
 - Incorporated/addressed comments by Thales
 - Demonstrated limited WTRP interoperability between USN and NC3A implementation
 - Working Draft 3 to be amended to incorporate USN developments in robust token-relay management; planned completion 3Q 2009
- Annex M unused / reserved
 - Determine relevance—intended as placeholder for (adaptive) TPM: approaches based on S'5066
- Annex N Addressing Issues
 - Working Draft 2 reviewed by BLOSCOMMS, no reviewer objections
 Annex O Integration with Internet Protocol (IP) Networks
 - Working Draft 1 incorporating current practice (e.g. USN/NC3A), to be coordinated with NATO WIRA and subnet relay requirements

Recent Efforts

- Principal efforts in finalizing Annex L for Wireless Token Ring Protocol (WTRP), responding to:
 - review/commentary on earlier draft (primarily by France/Thales, asking for more-capable token-relay support)
 - US Navy initiatives in implementing robust token-relay support sparse topologies (e.g., BLOS HF and UHF)

WTRP – A distributed, self-organizing, self-healing, asynchronous Media-Access-Control Protocol:

- net start, net entry, lost/missed tokens ...
- the ring defines the transmit-access cycle in the radio broadcast medium

Token - Relay: the debate(1)

- why and when is token-relay required (as opposed to relay of other traffic):
 - to relay the Right-to-Transmit when the successor is not reachable
 - in certain topologies (hub-and-spoke; linear)
 - these can occur as the ring grows in size and evolves even if the network does not require them in a later ring-configuration.
- how to promote efficiency?
 - restrict token-relay usage in the ring?
 - through optimistic joining?
 - ring-rethreading?

Token – Relay: the debate(2)

- to what extent should token-relay be supported?
 - the previous draft and implementations support one token-relay topology only, i.e., only on token relayer is allowed in the network; <u>BUT</u>
 - USN has recently developed and tested a robust token-relay approach for sparse topologies where more than one relay may be required
- Previous Annex L drafts adopted a conservative approach, previously implemented by US, that restricts the use of token-relay to limiting case of a three-node linear network
- What follows incorporates NC3A's present understanding of the current USN proposal and design for robust tokenrelay, as proposed at the BLOSCOMMS 2008/02 meeting.

Principle of Extensibility: Example: HF-WTRP Token Message for Annex L

Extends S'5066 message catalog

- existing message type, new subtype
- HF-WTRP token implemented as a Type-6 DPDU Extended EOW Message
 - based on the UC Berkeley WTRP IERs
 - UCB-WTRP used wireless Ethernet MAC addresses (6 bytes)
 - this design uses 4-byte STANAG 5066 addresses, (w/ variable-length source and destination addresses)

WTRP token fields:

- ■FC frame control
- DA destination address
- ■SA source address
- RA ring address (I.e., address of the node that instantiated the ring)
- ■SN sequence number
- •GSN generation sequence number

Bit	7	6	5	4	3	2	1	0	Field encoding per S5066	
n.									Annex C, as amplified below:	
			e two-byte	messag	e preamble	e is not sho	wn;		_	
	0	1	1	0	1	1	1	1	$DPDU_TYPE = 6,$	
									per S5066 Annex C;	
					(1)				EOW_TYPE = 15	
					field $^{(1)} \in$				EOW_DATA = HFTRP	
		{Token, So	Frame-Control							
			encoded per S5066 Annex C							
	CYCY	OF ARRE			NSMISSIC			0)		
		OF_ADDR			SIZE_OF	_HEADE	$\mathbf{R}^{(2)}$ ($\mathbf{k} = 2$	8)	m, k in bytes, encoded per \$5066 Annex C	
	(m	∈ {1 7})							De coo i minen c	
									Field-length = m bytes;	
m		SOI	IDCE AN	ID DES	STINATIO	M ADDI	DECC		encoded perS5066 Annex C; These fields correspond to	
m		500	JKCE_AI	ID_DE)III(AII(ועעה_העור	NESS.		the HFTRP DA and SA	
									fields	
		NOT	USED	1	HAS	EXT	VALID	ACK	This is the extended form of	
		1,01	_ 0522_	.=	BODY	MSG =	MSG =	11011	the ID Mgmt EOW message;	
n					= 0	1	1		encoded per S5066 Annex C	
	MSB -	M	ANAGEM	ENT F	RAME ID	NUMBE	R	- LSB	encoded per S5066 Annex C	
n			1							
			Potential HFTRP-required							
n	(e.g	g., to-design	field (e.g., payload size)							
	RA - RING_ADDRESS									
n		(4-bytes, ii					6 Annex A	4)	HFTRP-required field (3)	
					QUENCE HFTRP re	_			********	
m			HFTRP-required field							
					ION_SEQ HFTRP re	-			HETDD magning d field	
m			HFTRP-required field							
122	(1	-byte, conte	HFTRP-required field							
<u>m</u>		N - NUMBE							TIT TKI -required field	
m	HOL	· - IVUIVIDE	HFTRP-required field							
H 1			encoded per S5066 Annex C							
	T GD									
H_2	LSB									
									L	

Legend:

S'5066 Standard

Dual-use: S'5066 & WTRP

HFWTRP-unique

Token Structure for Multi-Hop Token-Relay

- Explicit inclusion of transmit-order list
 (TOL) and Distance
 Matrix, intended to tackle the problems
 of multi-hop tokenrelay head on.
- Allows fastresponse to topology changes
- Provides TOLoptimization andrecovery from sub-optimal TOL creation

Byte/Bit Num.	7 6 5 4 3 2 1 0	Field encoding per S5066 Annex C, as amplified below:							
	The two-byte message preamble is not shown; DPDU Header								
	Type-6 Management DPDU;								
0	Sub-Type 15	DPDU (Token) Header encoded per							
— (Header	(RTT Token),								
Length -1)	Number of Nodes = $NON = N$	Annex L.3.2.1, Table L-2.							
	Body Length Field = $8 * (N + Ceil(N/2))$								
	Ring Transmit-Order List (TOL)								
	EOW Payload Contents for Multi-Hop Token-Relay Algorithm Operation								
	Node Distance Matrix (DM)								
CRC_B_1	MSB								
CRC_B_2	CRC_32 bits ON_PAYLOAD	Header on Body							
CRC_B_3	encoded per Annex C LSB								
CRC_B_4									

Structure of Transmit-Order-List (TOL)

Provides

- Global knowledge of the Ring Transmit Cycle
- Rapid dissemination of TOL changes
- Advertisement of next solicitor-node
- Support for Interface
 auto-configuration
 through linkage of MAC address to upper-layer
 protocol info (e.g., IPv4
 address)

Byte/ Bit Num.	7	6	5	4	3	2	1	0	Field encoding per S5066 Annex C, as amplified below:
0	SOL = {0 1}	0	0	0	MSB				
1					-				
2		ST	ΓANAG						
3				First Node-Address-Pair entry					
4	MSB								(in network-byte order)
5			IP	-protoc	col usage	2			
6			(e.g., II	Pv4 Noo	de-Addr	ess 1)			
7									
8 (N-1) + 0	SOL = {0 1}	0	0	0	MSB				
8 (N-1) + 1									
8 (N-1) + 2		ST	CANAG	5 5066 N	Node-Ad	dress N	I		
8 (N-1) + 3								LSB	N-th Node-Address-Pair entry
8 (N-1) + 4	MSB			(in network-byte order)					
8 (N-1) + 5			IP						
8 (N-1) + 6			(e.g., IF	Pv4 Noc	le-Addro	ess N)			
8 (N-1) + 7									

Distance Matrix Encoding (NON = Even)

- Dense-packed matrix
 - Variant packing for N even, and N odd
- Size: Ceil (N²/2)
- Dist(i,j) encodes
 the distance from
 n_i to n_i in 4 bits

Byte/ Bit Num.	7	6 5	4	3	2 1	0	Field encoding as amplified below:
0	msb	$dist_{0,0}$	lsb	msb	dist _{0,1}	lsb	
1	msb	$dist_{0,2}$	lsb	msb	dist _{0,3}	lsb	First Row of the Distance Matrix
		•••			•••		
Ceil(N/2)-1	msb	$dist_{0,(N-2)}$	lsb	msb	$dist_{0,(N-1)}$	lsb	
Ceil(N/2)	msb	$dist_{1,0}$	lsb	msb	dist _{1,1}	lsb	
Ceil(N/2)+1	msb	dist _{1,2}	lsb	msb	dist _{1,3}	lsb	Second Row of the
							Distance Matrix
2*Ceil(N/2)-1	msb $dist_{I,(N-2)}$ lsb msb $dist_{I,(N-I)}$ lsb		lsb				
(k-1)*Ceil(N/2)	msb	$dist_{(k-1),0}$	lsb	msb	$dist_{(k-1),1}$	lsb	
(k-1)*Ceil(N/2)+1	msb	$dist_{(k-1),2}$	lsb	msb	$dist_{(k-1),3}$	lsb	k-th Row of the
							Distance Matrix
(k)*Ceil(N/2)-1	msb	$dist_{(k-1),(N-2)}$	lsb	msb	$dist_{(k-1),(N-1)}$	lsb	
(N-1)*Ceil(N/2)	msb	$dist_{(N-1),0}$	lsb	msb	dist _{(N-1),1}	lsb	
(N-1)*Ceil(N/2)+1	msb	$dist_{(N-1),2}$	lsb	msb	dist _{(N-1),3}	lsb	Last Row of the
							Distance Matrix
N*Ceil(N/2)-1	msb	$dist_{(N-1),(N-2)}$	lsb	msb	dist _{(N-1),(N-1)}	lsb	
NR: Coil (x) is the smallest integer greater than or equal to x							

Distance Matrix Encoding (NON = Odd)

- Dense-packed matrix
 - Variant packing for N even, and N odd
- Size: Ceil (N²/2)
- Dist(i,j) encodes
 the distance from
 n_i to n_i in 4 bits

Byte/ Bit Num.	7	6	5	4	3	2 1	0	Field encoding as amplified below:	
0	msb	di	$st_{0,0}$	lsb	msb	$dist_{0,1}$	lsb	First Dam of the	
1	msb	di	$st_{0,2}$	lsb	msb	$dist_{0,3}$	lsb	First Row of the Distance Matrix	
		,	•••			•••			
Ceil(N/2)-1	msb	dist	to,(N-1)	lsb	msb	$dist_{1,0}$	lsb		
Ceil(N/2)	msb	di	$st_{I,I}$	lsb	msb	$dist_{1,2}$	lsb	Second Row of the	
				_				Distance Matrix	
N - 1	msb	dist	, (N-2)	lsb	msb	$dist_{I,(N-I)}$	lsb		
	msb	disi	$t_{(k-1),0}$	lsb	msb	$dist_{(k-1),1}$	lsb	k-th Row of the	
	msb	dis	$t_{(k-1),2}$	lsb	msb	$dist_{(k-1),3}$	lsb	Distance Matrix	
	msb	dist ₍₎	k-1),(N-1)	lsb	msb	$dist_{(k),(N-1)}$	lsb		
	msb	dis	$st_{(k),0}$	lsb	msb	$dist_{(k),1}$	lsb	(k+1)-th Row of the	
								Distance Matrix	
	msb	dist	(k),(N-2)	lsb	msb	$dist_{(k),(N-1)}$	lsb		
	msb	dist	(N-1),0	lsb	msb	$dist_{(N-1),1}$	lsb		
	msb	dist	(N-1),2	lsb	msb	$dist_{(N-1),3}$	lsb	Last Row of the	
								Distance Matrix	
$Ceil(N^2/2)$ -1	msb	dist _{(!}	N-1),(N-1)	lsb	msb	0	lsb		
N.B.: Ceil (x) is the smallest integer greater than or equal to x									

Payload Size vs Network Size

Network Size = (NON)	Payload Size =	TOL Size -	+ DM Size
2	18	16	2
3	29	24	5
4	40	32	8
5	53	40	13
6	66	48	18
7	81	56	25
8	96	64	32
N	$8*N + Ceil(N^2/2)$	8*N	Ceil(N ² /2)

 $N.B.: \ \ Ceil\ (x) \ is \ the \ smallest \ integer \ greater \ than \ or \ equal \ to \ x$

Mapping DM Row/Column Entries to Node Addresses

- TOL and DM indices correspond:
 - The i-th TOL entry contains the STANAG 5066 address of the 'from'node in dist_{i,i} and the 'to' node in dist_{i,i}
- Manipulation of the TOL and DM <u>must</u> preserve this correspondence, e.g.,:
 - insertion of a newly-joined network node into the TOL, shall result in the insertion of corresponding row and column elements in the DM;
 - deletion of a node from the network shall result in the deletion of the node from the TOL and the corresponding row and column elements in the DM;
 - re-ordering of the TOL (e.g., to implement a more efficient transmit sequence) shall result in a re-ordering of the corresponding row and column elements of the DM.

Three Cases/Scenarios that Elicit Change

Scenario 1 (Joining Scenario):

 A node joins the network and thereby <u>must</u> be inserted into both the TOL and the DM;

Scenario 2 (Transient-Topology Scenario):

 Changes in the network topology <u>may</u> result in changes in the distance matrix and may force a change in the TOL, e.g., when a successor node becomes unreachable (even with relay);

Scenario 3 (TOL-Optimization Scenario):

 Sub-optimal TOL (e.g., TOL that use more token relays than necessary) <u>may</u> evolve in a network during Joining or Transient Topology scenarios, and reconfiguration of the TOL to obtain a shorter RCL <u>may</u> be performed when the network topology has stabilized.

Transmit-Order-List Optimization

TOL Recomputation

- The ring's TOL is recomputed only after the TOL and the DM have been stable for one or more ring cycles, i.e.,
- A TOL is candidate for recomputation whenever:
 - (TOL, DM)_{current} = (TOL, DM)_{last}. <u>and</u>
 - RCL > Number of Nodes = minimum RCL

Modified Nearest Insertion Method (MNIM)

- One method for finding approximate solutions to the travelling salesman problem, closely related to finding an optimal TOL
- Effectively performs a virtual joining sequence (VJS), rebuilding the TOL by adding one node at a time.

Virtual-Joining Sequence for TOL Reordering

- Randomize the TOL, placing self at top of list
- $TOL_k = (n_0, n_1, n_2, ..., n_k)$
 - the state of the transmit-order list after k nodes have been added,
- randomly choose node n_j from the remaining nodes, and
- insert n_j between the two nodes n_i and n_{((i+1)mod k)} that minimizes the increase in RCL, i.e., that minimizes:

- $\triangle RCL_i = dist(n_i, n_j) + dist(n_j, n_{((i+1) \bmod k))} dist(n_i, n_{((i+1) \bmod k))})$
- Repeat until all nodes have been added
- On own RTT, forward as new TOL iff RCL less than current TOL

Status and Way Ahead

- Currently continuing requirements-capture and performance evaluation of the USN proposal
 - Recent USN/AUSCANNZUKUS Risk-Reduction Limited-Objective Testing of the protocol at UHF shows good performance in a variety of 'challenging' scenarios ... looking for wider release of results to NATO
 - detailed assessment at lower HF data rates needs to be performed to assess overhead impact
- NC3A intends to develop ratification-draft re-write of Annex L incorporating multi-hop token-relay capability
 - Protocol / algorithm / message usage appear conformant with current
 S'5066 Ed 3 roadmap for robust IP-over-wireless capability
 - Present draft to BLOSCOMMS 09 in March, ratification-draft submission in 3Q 2009 following further tests

Olestions²