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Presentation overview

• Overview of channel quality variation
• Measuring channel quality variation
• Statistical model of channel quality variation
• Incorporating the channel variation model into an HF 

channel simulatorchannel simulator
• Data link protocol performance measurements 

under simulated channel quality variationy

Presentation summarizes work to be reported in two forthcoming papers: 
– William M. Batts, Jr., William N. Furman, and Eric N. Koski, “Empirically Characterizing 

Channel Quality Variation on HF Ionospheric Channels”, Nordic Shortwave Conference 2007 
(HF 07), August 14-16 2007, Fårö, Sweden. 

– Batts, Furman, Koski, “Channel Quality Variation as a Design Consideration for Wireless 
Data Link Protocols”, submitted to IEEE Military Communications Conference MILCOM 
2007, October 29-31 2007, Orlando, Florida, USA. 
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Channel quality variation

• Performance of HF communications techniques is typically measured under a 
standard set of simulated HF channel conditions as specified by ITU-R Rec. 
F.1487 (per the ‘Watterson’ HF channel model)

• Most commonly used: y
– Gaussian noise
– ITU-R ‘Mid-Latitude Disturbed’ channel profile: two paths, 2 ms multipath spread, 

1 Hz Doppler spread
• HF ionospheric channel conditions vary constantly over time scales of seconds 

‘to minutes; this variation is not captured by the ‘Watterson model’ or by ITU-R 
Rec. F.1487

• Hypotheses: 
– This ‘medium-term’ variation could have a significant impact on HF 

communications system performance especially that of adaptivecommunications system performance, especially that of adaptive 
communications techniques

– The incremental redundancy techniques used in HDL+ are especially likely to 
have beneficial impacts under conditions of ‘medium-term’ channel variation

• Precedents: 
– Furman&McRae paper, MILCOM 1993
– Recent papers by Eric Johnson using ‘Walnut Street’ model
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Characterizing channel quality 
variation

• Collected time-series (60 to 72 hours) of channel SNR readings 
using S4538 BW5 at intervals of 2.7 seconds

• To remove diurnal variation component, high-pass filtered with 5th-
order Cheb she filter f 0 001 H (16 67 min )order Chebyshev filter, fc = 0.001 Hz  (16.67 min.)

• Computed 2048-point FFTs (~90 minutes) started at each hour in 
the time series, to characterize ‘variation spectrum’

• Re-filtered with second filter, fc = 0.01 Hz, and computed before-Re filtered with second filter, fc  0.01 Hz, and computed before
and-after variances to separate into ‘Long-Term Variation’ (LTV) vs. 
‘Intermediate-Term Variation’ (ITV)

• Sampling interval determines Nyquist frequency of 0.185 Hz.  
Rayleigh fading (per Watterson model) results predominantly inRayleigh fading (per Watterson model) results predominantly in 
variation above the Nyquist frequency – aliased roughly uniformly 
across the band 
– 6.3 dB2 of SNR variance attributed to ‘Rayleigh fading’

A t d i d t f ti f d t i ld• Aggregated variance and spectrum from same time of day to yield 
24-hour profile

• Averaged variance and spectrum across the 24 hours to yield 24-
hour composite variance and variation spectrum
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Links used for SNR time-series 
collection

• 150W Tx power, broadband 
di l tdipole antennas

data set link type start end Tx site Rx site distance frequency 
Melbourne 
070223 

long-haul 
skywave 

2/23/2007 
13:14 EST 

2/26/2007 
15:57 EST 

Rochester, 
NY 

Palm 
Bay, FL 1697 km 8.2940 

MHz 

/ / / /
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Wolcott 
070302 NVIS 3/2/2007 

16:39 EST 
3/5/2007 
8:10 EST 

Rochester, 
NY 

Wolcott, 
NY 61 km 6.2300 

MHz 

 



SNR time series (example)

 
SNR time series, Rochester to Melbourne
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interval



SNR variance profile

SNR variance per hour (EST), Rochester, NY to Melbourne, FL, 8.2940 MHz 
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• 6.3 dB2 of variance 
attributed to ‘Rayleigh 
fading’ per ITU-R MLD 

• Variance is greatest near 
midnight and daynight 
transitions, least near 

HFIA Jul 07: Channel quality variation - 7 assuredcommunications™ 19-Jul-07

g p
model

,
midday



Composite SNR variation 
spectrum
 

Composite SNR variation spectrum, 
Rochester to Melbourne 070223, 8.2940 MHz
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• The SNR variation visible in the FFT 
magnitudes includes two distinct phenomena: 

– ‘Long-term variation’ (LTV) concentrated 
below 0.01 Hz

– ‘Intermediate-term variation’ (ITV) exhibiting 

• ‘Rayleigh fading’ above 0.185 Hz is aliased 
uniformly across the band
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Channel variation model

 ITV time
constant

Gaussian
noise

ITV 
Gain

Input
Signal

0.001Hz

Specified 
mean SNR

α

α

ITV

LTV

Standard 
Watterson 
Channel
Simulator

Momentary
SNR

α LTV

LTV time
t t

0.001Hz

Diurnal
LTV 
Gain

Gaussian
noise

Simulator

• Mean SNR input to Watterson-model 
simulator is replaced with a momentary

• ‘Alpha filter’ produces noise with 
exponential autocorrelation

DVconstant Diurnal 
profile

Gain Output
Signal

simulator is replaced with a momentary 
SNR parameter reflecting channel quality 
variation

• Independent generator structures are 
used to generate Intermediate-Term 
(ITV) and Long-Term (LTV) random

exponential autocorrelation
• High-pass filter eliminates variation in the 

frequency range attributed to diurnal and 
longer-term processes

• Diurnal profile could be based on 
t VOACAP/ICEPAC
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processes

measurements or VOACAP/ICEPAC 
predictions (as in ‘Walnut Street’)



Model calibration

• Basic idea: Specify ITV and 
LTV parameter-values (gain 
and time constant) so as to 
approximate the SNR variation

Procedure:

1. Collect on-air time series of approximate the SNR variation 
spectrum of a measured data 
set

• FFT magnitudes are ‘noisy’: 
exhibit considerable random

Co ect o a t e se es o
SNR observations

2. Compute 24-hour composite 
SNR variance and variance 
spectrum (FFT)exhibit considerable random 

variation from one bin to the 
next

• Compute ‘cumulative profile’ 

spectrum (FFT)
3. Repeat

a. Select candidate ITV and 
LTV parameters

b G t d l SNR tifrom FFT magnitudes to 
suppress noisy variation

• Use cumulative profiles for 
calibration

b. Generate model SNR time 
series

c. Compute time series 
variance and spectrum
C

ca b at o
d. Compare time series and 

spectra between data set and 
model

4. Until variance and spectrum 
‘ t h’ ffi i tl

HFIA Jul 07: Channel quality variation - 10 assuredcommunications™ 19-Jul-07

‘match’ sufficiently



Model calibration: cumulative 
spectral profile
 

Model profile vs. on-air profile, Melbourne 070223
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Model validation

• Channel variation model incorporated into PC-based 
‘Watterson’-model channel simulator (derived from NATO-
approved DSP based simulator)approved DSP-based simulator)

• ITU-R ‘Mid-Latitude Disturbed’ channel model used to 
simulate ‘Rayleigh fading’ (similar to fading and multipath 
b d th h l)observed on the channel)

• Channel variation model uses ITV and LTV parameters 
obtained by calibrating the model to the on-air data sety g

• BW5 LQA Sound bursts transmitted radio-to-radio through 
channel simulator

• Recorded SNR observations on BW5s received over the• Recorded SNR observations on BW5s received over the 
‘simulated channel’ (as we did in on-air measurements)

• Computed SNR variance and variation spectrum cumulative 
f S ( )
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profile on observed SNR time series (as with on-air data set)



Simulation model validation

 Channel simulator profile vs. on-air profile, Melbourne 070223
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• Model embedded in channel simulator 
with Melbourne 070223 parameters

• Collected 24-hour time series of SNR 
measurements, sounding between radios 
th h h l i l t

• Computed FFTs and cumulative spectral 
profile

• SNR variance 24.6 dB vs. 24.8 dB
• Cumulative profile standard error < 1.0%

q y ( )
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Using the calibrated model

• Objective: compare throughput performance of 
– STANAG 5066
– The new ‘HDL+’ data link protocol proposed for incorporation– The new HDL+  data link protocol proposed for incorporation 

into STANAG 4538
under conditions of simulated channel quality variation. 

• Hypothesis: HDL+ will cope better with channel qualityHypothesis: HDL+ will cope better with channel quality 
variation due to its use of incremental-redundancy (“Type II 
Hybrid-ARQ”) techniques

• Procedure:Procedure: 
– Use PC-based channel simulator with ITV/LTV model to add 

simulated channel SNR variation to forward and reverse 
channels

– Measure delivery time (throughput) for S5066 and HDL+ 
delivering 100 kbyte (or 50 kbyte) messages under specified 
conditions
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Compare HDL+ vs. S5066 
throughput performance, +20 dB
Throughput performance on channels with time-varying SNR, 100 kByte messages

HDL+ STANAG 5066
LTV LTV

0 2 4 6 0 2 4 6
ITV 0 1.000 0.995 0.962 0.930 ITV 0 0.763 0.858 0.761 0.599

2 0.978 0.957 0.935 0.919 2 0.789 0.768 0.654 0.583
4 0.905 0.896 0.880 0.851 4 0.643 0.573 0.572 0.544
6 0.835 0.816 0.796 0.785 6 0.474 0.456 0.401 0.377

0 700
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0.900

1.000

HDL+ normalized thruput, ITU-R MLD, +20 dB mean SNR
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• Data are ‘noisy’ due to modest quantity
• S5066 throughput ~20% worse
• For ITV, LTV std dev = 6 dB, S5066 throughput falls to less than half that of 

HDL+
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• S5066 is clearly much less tolerant of SNR variation



Compare HDL+ vs. S5066 
throughput performance, +10 dB

Throughput performance on channels with time-varying SNR, +10 dB mean SNR, 50 kByte messages

HDL+ STANAG 5066
LTV LTV

0 2 4 6 0 2 4 6
ITV 0 1.000 0.983 0.951 0.920 ITV 0 0.503 0.672 0.514 0.481

2 0.927 0.937 0.901 0.855 2 0.498 0.531 0.516 0.438
4 0.818 0.815 0.799 0.826 4 0.419 0.412 0.370 0.351
6 0.680 0.741 0.672 0.686 6 0.345 0.310 0.281 0.292
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HDL+ normalized thruput, ITU-R MLD, +10 dB mean SNR
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• Larger difference even without SNR variation, due to multipath and fading 
per ITU-R ‘Mid-Latitude Disturbed’ profile

• S5066 throughput is less than half that of HDL+ for ITV, LTV std dev = 4 dB
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Differential impact of channel 
variation on STANAG 5066, HDL+

STANAG 5066 / HDL+
LTV

0 2 4 6
ITV 0 0.503 0.684 0.541 0.523

2 0.537 0.566 0.572 0.513
4 0.512 0.506 0.463 0.425
6 0.507 0.418 0.419 0.426

STANAG 5066 / HDL+
LTV

0 2 4 6
ITV 0 0.763 0.863 0.790 0.644

2 0.807 0.803 0.700 0.634
4 0.710 0.640 0.650 0.640
6 0.568 0.559 0.504 0.481
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Throughput ratio S5066/HDL+, ITU-R MLD, +10 dB mean SNR
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• STANAG 5066 throughput falls steadily farther behind that of HDL+ as 
channel variation increases

• Because of lack of attention to channel variation (and lack of a suitable 
model), in-lab performance comparisons have not been an accurate 
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Conclusions and future work

Conclusions:
• Channel quality variation is a significant factor influencing the performance of 

adaptive HF communications techniques
• The traditional ‘Watterson’ HF channel models included in ITU-R Rec F 1487• The traditional Watterson  HF channel models included in ITU-R Rec. F.1487 

do not include this channel quality variation phenomenon, and to this extent may 
inaccurately characterize HF system performance under real-world conditions

• Harris has developed a model structure representing real-world channel quality 
variation on ionospheric channels, and techniques for calibrating the model to p q g
observed conditions

• The model has been incorporated into a PC-based HF channel simulator 
(together with the ‘Watterson’ channel model) and used to measure 
performance of the HF data link protocols STANAG 5066 and STANAG 4538 
HDL+HDL+

• Our measurements show the incremental redundancy techniques used in HDL+ 
to be especially beneficial under real-world conditions of channel quality 
variation

• This channel quality variation model may be worth considering forThis channel quality variation model may be worth considering for 
standardization, possibly in the form of an ITU-R recommendation

Future work:
• Further data collection on other paths: long-haul and NVIS
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• Analysis and model-calibration techniques possibly applicable to other data sets 
(DAMSON?) – calibrate for high-latitude and equatorial conditions


