

OTAN

STANAG 5066 Edition 2: Status Update

Presented by Donald Kallgren NC3A-CISD-TNSRC don.kallgren@nc3a.nato.int +31-70-374-3442

S'5066 E2 Status

Development Roadmap

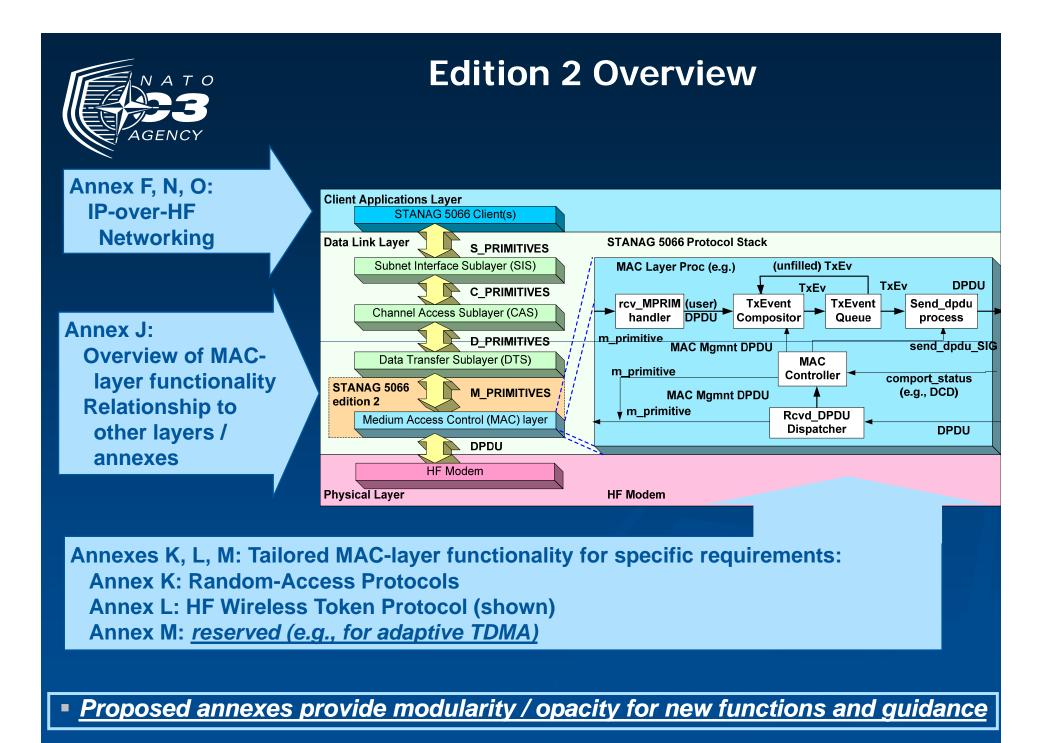
- Presented to BLOSCOMMS AHWG fall 2005
- Approved:
 - Multiple-annex approach
 - Enhanced media access control mechanisms
 - IP-over-HF architecture
 - Standardized address-allocation plan
 - Focus in 2006 to complete ratification drafts and submit to nations

Annex L – submitted to second AHWG review

- Comments due and received by Dec 2005
 - Comments reviewed at 01/06 HFIA meeting
- Annexes J through N (re-) issued at 06/06 BLOSCOMMS AHWG meeting
- Annex O to be released by Fall '06

Agenda Topics

- Edition 2 Overview / Roadmap
- Annex K CSMA-CA status
 - spec overview
 - State-machine overview
- Annex drafts / updates
 - Annex J N provided at conclusion of BLOSCOMMs first 2006 meeting
- Annex O (IP-over-HF) draft topics under development
- Status-Summary and Way Ahead



STANAG 5066 Edition 2 – Proposed Scope

Main body provides overview of the structure of the Profile

List of Annexes

Edition 2 Development Principles

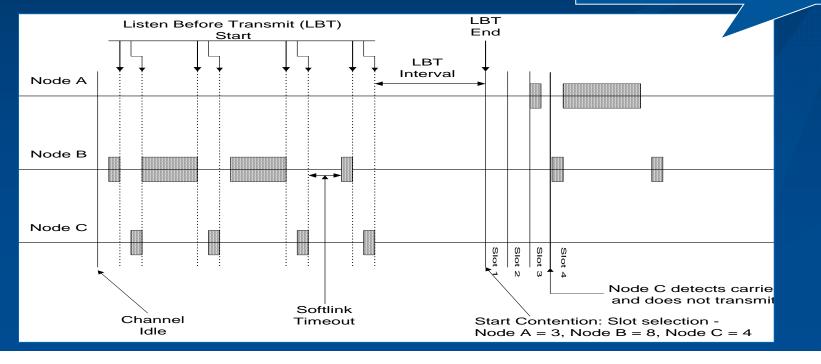
Extensibility — New capabilities based on:

- Layer opacity encapsulate new functionality in a new layer to minimize impact on remaining specification;
- Existing message catalog or
- New messages based on existing data-elements and message-design rules

Backwards Compatibility

Co-existence / non-interference

Backwards Interoperability (w / Edition 1)

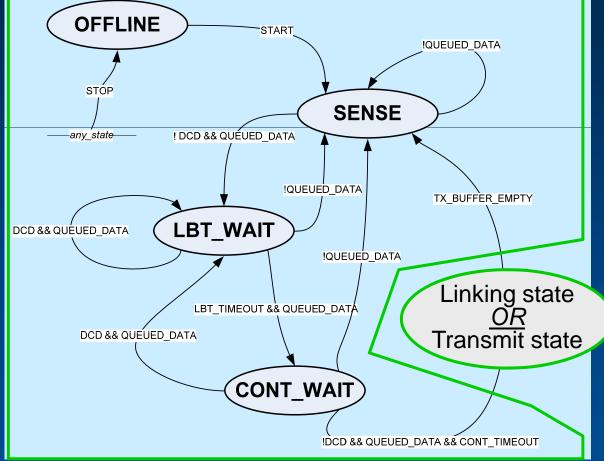

- Capability discovery w/ devolution to lowest-commondenominator
- Standardization (in Annex K) of vendor practice for CSMA / CA (Edition 1) networks
- Data-exchange at the most-capable modes held in common.

Annex K – Random Access Techniques

- Backwards Compatiblity / Interoperability
- Intended to formalize current vendor practice with Edition 1, e.g.:
 - Carrier sense:
 - Real-DCD from modem
 - Virtual-DCD from EOT field
 - Listen-Before-Transmit
 - Slotted response intervals

MacFarland et al, "Collision Avoidance Using STANAG 5066 in a Network Environment", HFIA-ICM, 14 Jan 2002

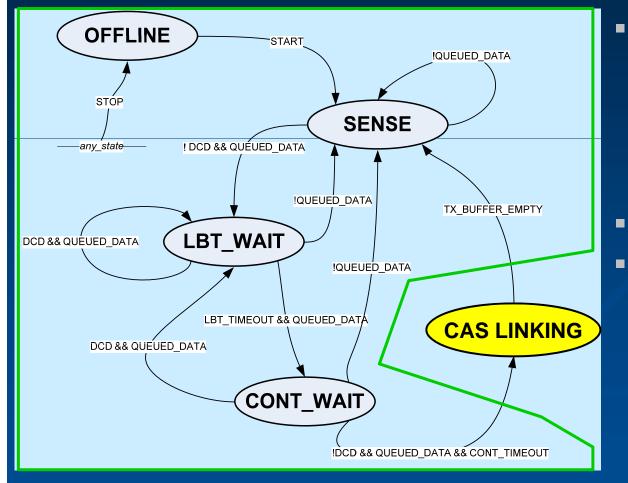
Annex K - Carrier-Sense Mechanism(s)


Data-Carrier Detect (DCD) Signal

- Hardware-provided, e.g., RS-232
 Received-Line Signal Detector
- Requires signal continuity from detection element (e.g., modem) through the equipment chain
 - Problematic with some equipment & cable infrastructure
 - Can introduce unknown delays
- Virtual DCD (VDCD) Signal
 - Based on detection of received DTS Protocol Data Units (DPDUs)
 - Uses DPDU End-of-Transmission (EOT) field for 'fly-wheel' tracking and prediction of DCD loss.

Communications Equipment Interface (e.g.)

RS232-C	Description	Circuit EIA	Circuit CCITT	RJ45	TIA 457
1	Shield Ground	AA			
7	Signal Ground	AB	102	4	5
2	Transmitted Data	BA	103	6	3
3	Received Data	BB	104	5	2
4	Request To Send	CA	105	8	7
5	Clear To Send	СВ	106	7	8
6	DCE Ready	CC	107	1	6
20	DTE Ready	CD	108.2	3	4
22	Ring Indicator	CE	125	1	9
8	Received Line Signal Detector	CF	109	2	1
23	Data Signal Rate Select (DTE/DCE Source>	CH/CI	111/112		
24	Transmit Signal Element Timing (DTE Source)	DA	113		
15	Transmitter Signal Element Timing (DCE Source)	DB	114		
17	Receiver Signal Element Timing (DCE Source)	DD	115		
18	Local Loopback / Quality Detector	LL	141		
21	Remote Loopback	RL/CG	140/110		
14	Secondary Transmitted Data	SBA	118		
16	Secondary Received Data	SBB	119		
19	Secondary Request To Send	SCA	120		
13	Secondary Clear To Send	SCB	121		
12	Secondary Received Line Signal Detector/ Data signal Rate Select (DCE Source)	SCF/CI	122/112		
25	Test Mode	ТМ	142		
9	Reserved for Testing				
10	Reserved for Testing				
11	Unassigned				

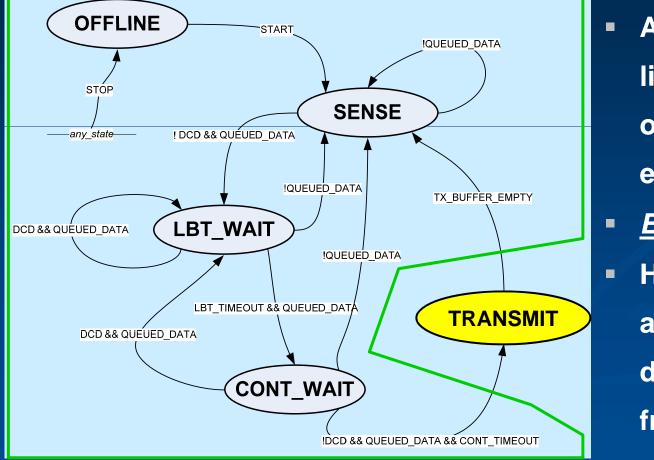


- State Diagram
 - <u>two approaches:</u>
 - applied to control
 initiation of the CAS linking protocol
 - <u>OR</u>
 - applied to initiation of each transmission event

Approaches have different properties and performance characteristics

Approach 1: CSMA-CA applied <u>only</u> prior to the CAS-linking protocol

Provides more
efficient use of the
channel when the
physical link is in
place.

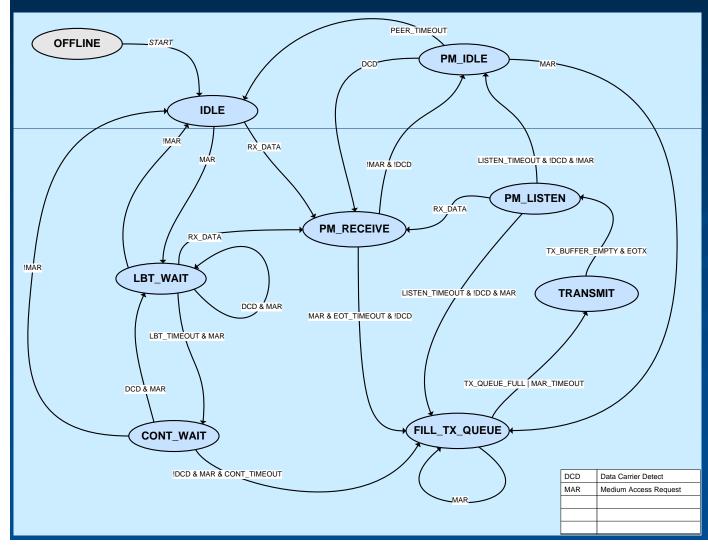

<u>BUT</u>:

Effectively limits channel access to a single physical link for the duration of the information-exchange requirement

Approach 1 is the apparent implementation mode in commercial products

Approach 2: CSMA-CA applied prior to <u>each</u> transmit opportunity

Allows multiple softlink/physical-link operation in a network environment,

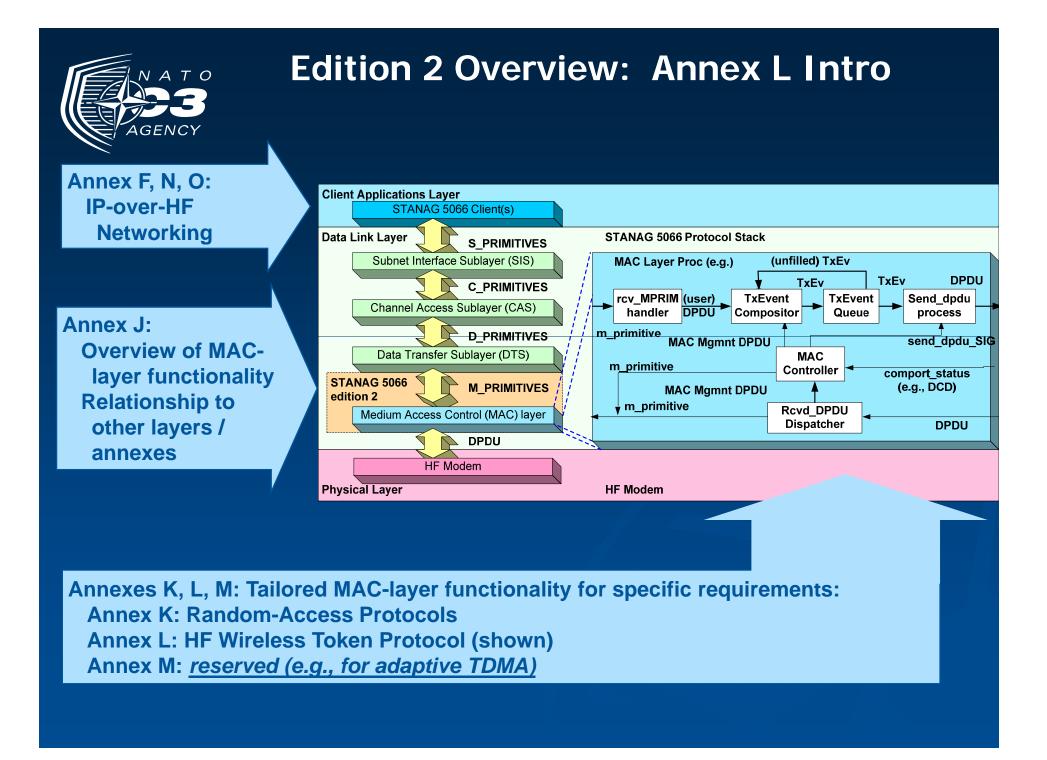

<u>BUT</u>

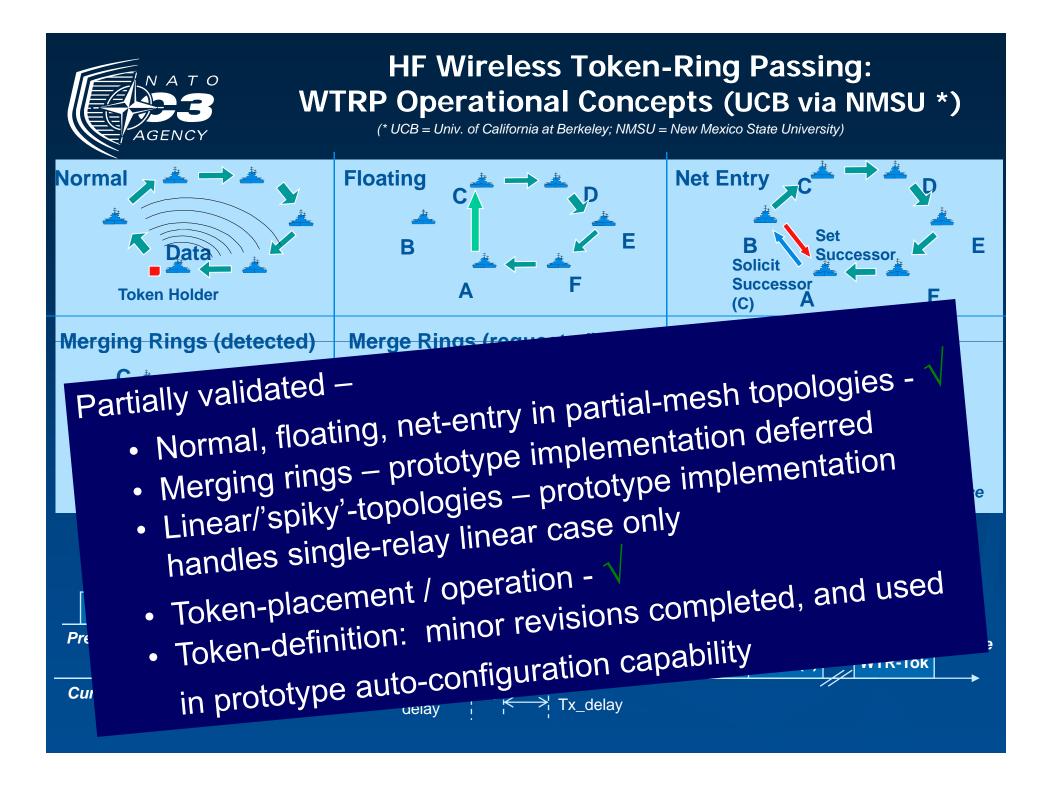
Has higher overhead, as collision-avoidance delays occur more frequently.

No apparent vendor implementations of Approach 2

Composite Approach: CSMA-CA applied prior to linking, but may be applied if multiple nodes on the channel are detected

- Provides efficient use of the channel with a single physical link.
 AND
- Allows multiple softlink/physical-link operation in a network environment,
 BUT
- Reverts to higher


 overhead in multi-link
 mode, as collision avoidance delays
 occur more
 frequently.



CSMA-CA: Protocol Controls

Scalar Control Parameters:

	Parameter Nam	ie	Default Value	Units	Com- puted	Default-Value Name; Comments		
	CONT_SLOT_WI	OTH	3	Secs	no	DEFAULT_ CONT_SLOT_WIDTH; optimization of this value requires that it be a function of the modem preamble duration, data-rate, interleaver duration.		
	NUM_CONT_SLO	TS	16	integer	No	DEFAULT_NUM_CONT_SLOTS; the va selected is a balance between probability one and only one node selecting the winn slot and acceptable delay (eg. 3 not 90%probability, 16 slots)		
Ti	Timers:							
	Timer Name	Default Value			Units	Com- puted	Default-Value Name; Comments	
LBT	_WAIT_TIMER	30			secs	No		
CON	IT_WAIT_TIMER	RAND[0 NUM_CONT_SLOTS – 1)] * CONT_SLOT_WIDTH			secs	Yes	computed as a function of the contention-slot width and the randomly selected contention-slot number for the access attempt.	

Token as new Type-6 DPDU EOW:

Subtype 15

- Contents based on the UCB WTRP IERs, w/ S'5066 addresses vice Ethernet MAC addresses
- Forward-looking design anticipates use of EOW w/ body part for IP-address auto-configuration

Notes:

- (1) field-values corresponding to the enumerated frame-control functions as defined herein
- (2) the given value are based on the use of 4-byte fields are required for SEQUENCE and GENERATION_SEQUENCE, but see the text for further discussion.
- (3) to reduce complexity in message parsing, these fields are encoded as a full fixed-length address fields following the STANAG 5066 rules, regardless of the encoding of the SA and DA fields

Annex L - HF WTRP Token

Byte/ Bit Num.	7	6	5	4	3	2	1	0	Field encoding per S5066 Annex C, as amplified below.	
110000	The two-byte message preamble is not shown;									
0	0	1	1	0	1	1	1	1	$DPDU_TYPE = 6,$	
									per S5066 Annex C;	
				EOW_TYPE = 15						
1				EOW_DATA = HFTRP						
		{Token,	Solicit S	uccessor, S	et Success	or, Set Pr	edecessor	:, }	Frame-Control	
2									encoded per S5066 Annex C	
3	CIZE			_OF_TRA	NSMISSIC SIZE OF			10)		
3	_	OF_ADI ∈ {1			SIZE_OF	_HEADE	$\mathbf{K} = \mathbf{K}$	28)	<i>m</i> , <i>k</i> in bytes, encoded per S5066 Annex C	
	(111	د ۱۱	<i>(</i>)		_	_	_	_	Field-length = m bytes;	
									encoded perS5066 Annex C:	
3 + m		S	OURCE	_AND_DE	STINATI(ON_ADD	RESS		These fields correspond to	
									the HFTRP DA and SA	
									fields	
		N	OT_USE	E D_1	HAS_	EXT MSG =	VALID MSG =	ACK	This is the extended form of	
4+m					$\begin{bmatrix} BODY \\ = 0 \end{bmatrix}$	1	1		the ID Mgmt EOW message; encoded per S5066 Annex C	
4+ <i>m</i>	MSB -	1	MANAC	EMENT F	•	NUMBE	P	- LSB	encoded per S5066 Annex C encoded per S5066 Annex C	
5+m	WISD -						/X	- LSD		
				erved for f					Potential HFTRP-required	
6+m	<u>(e.g</u>	<u>,, to-desi</u>	field (e.g., payload size)							
8+m		(A bytes	HFTRP-required field ⁽³⁾							
0+111		(, in the a	ddress fori SEO - SE			oo Annex	A)	III IKI -i cyun cu nelu	
12+m	SEQ - SEQUENCE_ID (4-bytes, per the HFTRP requirement)								HFTRP-required field	
			· · · · ·							
16+m			HFTRP-required field							
20										
20+m	(4-byte, context-dependent format, per the HFTRP requirement) NON - NUMBER OF NODES (2-bytes, per the HFTRP requirement)								HFTRP-required field	
24+m	NON		HFTRP-required field							
CRC_H_1			encoded per S5066 Annex C							
	LCD									
CRC_H_2	LSB									

Annex L – IP-Autoconfiguration ImplementationIssues

SSC Prototype Implements IP-Autoconfiguration

- Type-6 Management DPDU may convey a payload part:
 - List of STANAG 5066 addresses
 - List of available IP-subnet addresses in use
- Every Right-to-Transmit Token conveys the payload
- Nodes Joining the network select an unused IP address, pair it with their own STANAG 5066 address, and add the pair to the list when they join the network.
- A management client can query the HF subnetwork, determine the IP address that was selected, and configure the IP client appropriately.

NC3A position:

- supports concept and requirement for IP-autoconfiguration
- Would prefer to see IP-autoconfiguration as an on-demand capability (e.g., embedded in the solicitation and set-successor tokens)
- recommendation under study for next-draft Annex-L release

Annex M – Reserved for future use

Reserved for:

- Time-division multiple access approaches ???
 - Fixed TDMA ?
 - Adaptive TDMA ?

Annex N – STANAG 5066 Addressing Guidance

Proposal:

- Incorporate within S'5066 E2 the addressing plan adopted and promoted by the US in their Battle-Force E-Mail (BFEM'66) system
- Plan Overview
 - Partition of Address-Space into compact blocks
 - Allocation of blocks to regional / national / serviceoriented control authorities
 - Devolution of address-allocation to identified control authorities
 - Identified control authorities TBD

Annex N - S'5066 Address-Management Guidance

Current US/Coalition assignments defined for BFEM'66

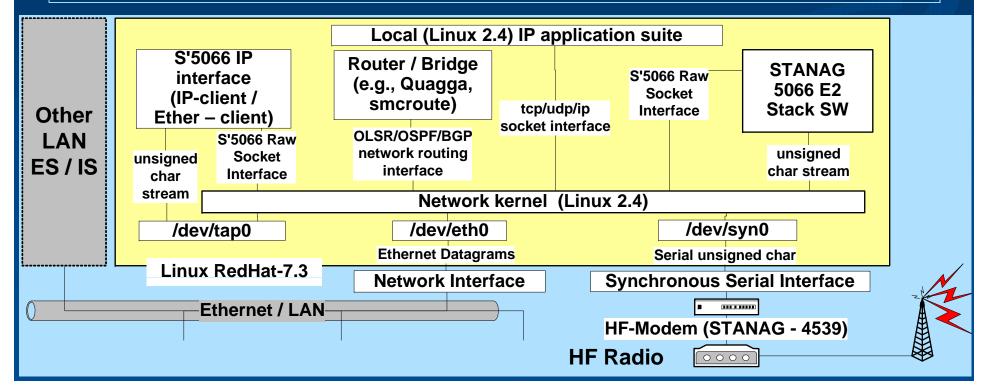
provided by US to the MWG (AC/322-SC/1-WG/3); forwarded to NACOSA for action

Address block pre-assignment and reservation by organization/region

only full-length addresses are managed

variable-length addresses (less than full-length) left unmanaged for ad-hoc use
management devolution to organizations (most TBD)

Currently Assigned Blocks:

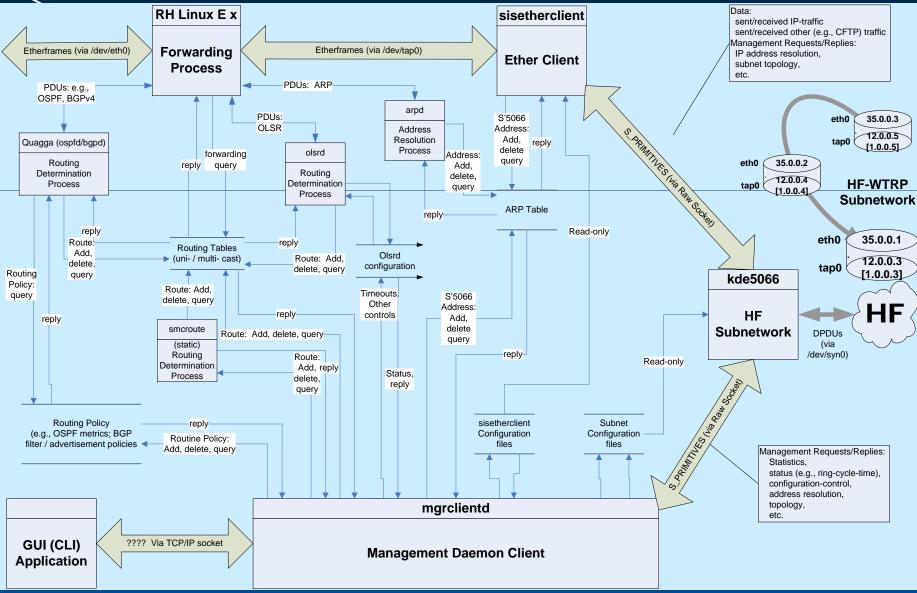

<u>range</u>	assignee	block size .
■ 1.x.y.z	US government agencies (DoD, FEMA, etc.)	16,581,375
■2.x.y.z - 3.x.y.z	North America	33,162,750
■4.x.y.z - 5.x.y.z	South America	33,162,750
■6.x.y.z - 7.x.y.z	Europe	33,162,750
■8.x.y.z - 9.x.y.z	Asia	33,162,750
■10.x.y.z - 11.x.y.z	Africa	33,162,750
■12.x.y.z - 13.x.y.z	Australiasia	33,162,750
■14.x.y.z	Oceana	16,581,375
■15.x.y.z	NGOs (e.g., ICRC)	16,581,375

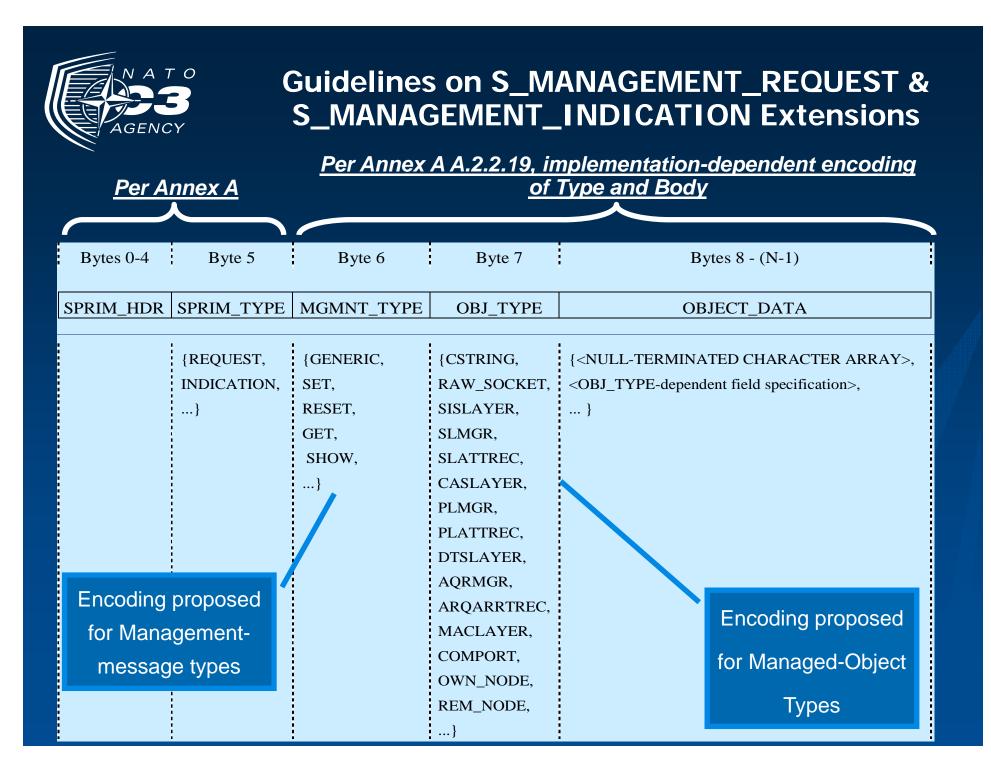
Assignment of Top-level and Devolved Management responsibilities TBD
 determination of NATO managed range TBD (as European or North American Subset? as an amalgamation of the nationally provided resources? Within the NGO block?)

Annex O - Integration with Internet Protocol (IP) Networks

- Formalize requirements and guidelines for:
 - End-system (ES) and Intermediate-System (IS)
 - IP address assignment, auto-configuration
 - Multi-protocol support
 - Routing (protocols for MANET operation), bridging / filtering
 - Edge proxies (e.g., SCPS / CFTP) for efficiency and performance

Annex O: IP-over-HF Functionality


Net-ready Interface for legacy radio


(e.g., Maritime / Deployed wireless systems)

- IPv4/IPv6/ARP multi-protocol interface
- Self-organizing distributed/master-less ad-hoc network management
- Multi-hop routing (OSPF / OLSR)
- Wireless Token-Ring or CSMA/CA media access control
- Intra-task-force and BLOS connectivity (up to 1800+ km)
- Demonstrated Support for a range of delay-tolerant IP applications:
 - Chat, Informal/Formal Messaging, JPIP-image transfer, DB replication, COP (using MCCIS)
- Low-end/low-cost entry to NNEC using legacy assets and software appliqué
 - Architecture and functionality demonstrably compatible with existing HF and VHF radio systems

Annex O: IP-Management Concept

Summary – Way Ahead

- Annex J Media Access Control Overview
 - Working Draft 1 to-be supplied AHWG 1 at first 06 meeting
- Annex K Random-Access Control Protocols
 - Working Draft 1 to-be supplied to AHWG 1 at first 06 meeting

- Annex L High-Frequency Wireless-Token-Ring-Protocol
 - Working Draft 2 distributed under silence period at AHWG 1 at second 05 meeting, comments received, reviewed; draft 3 to be provided prior to

- Annex M unused / reserved
 - Determine relevance intended as placeholder for (adaptive) TDMA approaches
- Annex N Addressing Issues
 - Working Draft 1 to-be supplied to AHWG 1 at first 06 meeting

- Annex O Integration with Internet Protocol (IP) Networks
 - Working Draft 1 to-be supplied to AHWG 1 prior to second 06 meeting

NATO OTAN

> berative Meeting - San Diego, US

by: D. G. Kallgren

STANAG 5066 Ec

Transmission and Networking Systems Resource Centre Communication and Information Systems Division NATO Consultation, Command and Control Agency