Implementing Full Duplex with Data Rate Adaption in STANAG 5066

HFIA 14th September 2009 Munich Nigel Arthur nigel.arthur@selex-comms.com

Introduction

- The presentation will cover:
 - STANAG 5066 requirement for full duplex
 - SELEX's implementation of full duplex
 - Possible interoperability issues
 - Data rate adaption in full duplex
 - Issues and performance

STANAG 5066 Full Duplex

- Full duplex operation was defined in the original S5066 standard Edition 1
- No changes that affected full duplex operation were included in Edition 2
- It is not very descriptive on how to implement
- Few vendors have implemented it
- Interoperability
 - Is the standard definition adequate to ensure interoperability?

- What is defined in the standard?
 - Most of the definition of full duplex can be found in Section C 'Data Transfer Sublayer' of the standard.
 - Section C.3 defines the D_PDU type 2
 - This PDU type is used to support full duplex operation and allows data and ack to be combined within a D-PDU (combined information and control frame)
 - Section C.3.2.3 End of Transmission (EOT)
 - When a node is configured for full duplex the EOT field is filled with all zeros
 - EOT is not used during full duplex data transfer
 - Section C.3.5 DATA_ACK (type 2) D_PDU (duplex data transfer)
 - Defines the data-ack D_PDU used for full duplex
 - Section C.3.6 RESET/WIN_RESYNC (Type 3) D_PDU
 - A type 3 D_PDU can be used to request/force a reset or resynchronisation of the ARQ machines for both directions of the data flow
 - Section C.5.4 Capability Advertisement (Type 4) EOW Message
 - EOW message is part of all D_PDUs
 - Bit 3 in the message field can be used to advertise full duplex support
 - Bit 2, split frequency operation must also be set

SELEX's Implementation

- SELEX has implemented full duplex operation as part of the HF2000 HF system for the Swedish Armed Forces.
- To support highly loaded strategic links
- Supported in 3G ALE and in manual mode
- Support for IP traffic and email
- HF2000 integrated frequency management system automatically manages frequency pairs to ensure optimum performance

SELEX's Implementation of Full Duplex

- We submit data D_PDU one at a time to the modem queue
 - Can be Data or Data+Ack D_PDU
 - This allows real time reaction to acknowledgements
- Wait for acknowledgement timer associated with each data D_PDU
 - Controls retransmission if required
- ACK frames are sent redundantly if no traffic is queued for transmission
 - Keeps the link alive for LQA and adds robustness to the link
- We insert the ACK in the next available transmit frame
- The modems are held in transmit until the physical link is broken
- We do not assume continuous transmission of data D_PDU
 - There may be breaks between transmit frames when unformatted data is transmitted

Data Transfer in Full Duplex

during link establishment As a default state for unidirectional traffic in full duplex links, ACKs are continuously returned during DATA PDU transfer

FrT frame transmission period timer

Ack T Wait for ACK

Data Lost in Full Duplex

A D-PDU not received will be retransmitted in as the next available frame after the Acknowledgement timer has expired.

Two-way Data Transfer in Full Duplex

Link Termination in Full Duplex

Interoperability Issues

- STANAG 5066 requires management messages for link maintenance
 - Needed for Data Rate Adaption negotiation (type 6)
 - Also RESET/WIN_RESYNC messages (type 3)
 - Physical link Make and Break (type 8)
- The standard requires that types 3 & 6 D_DPU are sent IRQ protocol and shall operate in half duplex mode
 - Requires agreed method to transfer between full duplex and half duplex
- Possible options
 - Insert a valid (non zero) EOT into the last duplex D_PDU
 - Just send first management messages and wait for other node to transition to half duplex
 - Remove requirement that types 3 & 6 are sent in half duplex mode

Interoperability Issues cntd.

• Timers

- Timers which are used in HF2000 are a function of how full duplex has been implemented
- Different implementation would require different timers
 - HF2000 timers are based on single D_PDU transmission
 e.g. Next D_PDU timer and Wait for Ack timers
- Acks need to be sent within the 'Wait for Ack' time frame to avoid unnecessary multiple transmission of the data frames
- Link termination due to poor link conditions is based on the number of negatively acknowledged and/or unacknowledged D_PDUs
 - Link efficiency may benefit by an agreed procedure

Data Rate Adaption in Full Duplex

- Transmit data rate changes are based on advisory messages from the remote node and error statistics at the local node
- Where auto baud is available, both nodes may independently change their data rates
 - This may result in loss of data during modem reconfiguration
 - May impact link stability due to link maintenance timers
- Where auto baud in not available, changes are negotiated in half duplex operation
 - Requires agreed transition between full and half duplex modes

- SELEX has implemented a full duplex capability into HF2000
- Where the standard is not definitive, SELEX has implemented its own solutions
- Several potential interoperability issues have been identified
- To ensure interoperability between vendors a common approach will need to be agreed