Optimizing STANAG 5066 Parameter Settings for HF & WBHF

Steve Kille & Jim Peters
Isode Ltd

Overview: What is Needed to Deploy STANAG 5066 over WBHF?

- Three "above modem" issues identified to enable WBHF deployment with applications
- Changes to S5066 to achieve good ARQ performance
 - Quick update
- Wideband ALE (WBALE)
 - Needed unless fixed frequency and channel size
 - (Primarily) for the modem and radio vendors/experts to specify
 - Expected to impact S5066 layer because of variable channel size (unlike narrowband ALE)
 - Potential benefits to involving application layer in WBALE
- Speed and Parameter Negotiation
 - Subject of this talk
 - Details in Isode white paper: "Optimizing STANAG 5066 Parameter Settings for HF & WBHF"

STANAG 5066 ARQ Enhancements

- Window exhaustion significantly impacts operation over WBHF
 - And to some extent at faster narrowband speeds
- Two proposals
 - Harris: "Recommended STANAG 5066 enhancements for Wideband HF"
 - Presentation at BLOS Comms Jan 2013
 - Isode: "Extending STANAG 5066 to improve ARQ Performance over Wideband HF Radio"
 - http://www.isode.com/whitepapers/extending-stanag-5066.html
- High Commonality
 - Extend Data PDU by one byte
 - Use backwards compatible encoding
 - New PDUs should be cleanly rejected by a compliant "old" implementation
 - Enables a "new" implementation to downgrade

ARQ Proposals: Differences and Convergence

- Key difference is use of the new byte:
 - Harris: 4 bits to extend Frame Sequence Number (FSN)
 - Isode: 8 bits to extend Frame Sequence Number (FSN)
- Koski/Kille consensus
 - Use 7 bits to extend Frame Sequence Number (FSN)
 - Use the last bit for:
 - · Extend the FSN; or
 - Increase DPDU size from 1024 to 2048
 - Either option seems fine
 - Make measurements to decide on the best approach
- A single agreed approach seems highly likely

Why Consider STANAG 5066 Parameter Setting?

- No options for WBHF waveforms: so have to do something
- Seems a useful opportunity to consider state of the art
 - Isode observations in trials suggests there is significant scope for improvement
- Modern Applications
 - STANAG 5066 research and products seem focussed on optimizing for bulk transfer and in particular email
 - We want to support a wide range of applications
 - In particular applications such as chat, where low latency is more important than maximising throughput

Skywave and Groundwave

Skywave

- Focus of much HF Research
- Rayleigh Fading and other variations
- Significant intermediate term variation
- CCIR model is best emulation

Groundwave

- Much less variation
- Additive White Gaussian Noise (AWGN) is best emulation
- Operationally very important, especially Maritime
- May be a significant factor in parameter approach

The choices to be made for \$5066 Transmission

- Speed (Waveform)
- Interleaver
- DPDU Size (the unit of error and ARQ retransmission)
- Transmit Length (1-127.5 seconds)
- Need to decide (and fix) parameters at start of transmission
 - Based on information available at that time

"Classic" STANAG 5066 Data Rate Change

- Receiver control with Sender veto
- Several handshakes and then both ends restart together
 - Enables restart with both ends on same settings
 - Essential for older waveforms
- Autobaud Waveforms change this
 - No need for the handshaking
 - Any new variable speed HF deployment is going to use STANAG 4539 or MIL STD 188-110
 - STANAG 5066 does allow for this
 - But does not go far enough
 - Some interpret as retaining receiver control

New Approach: Big Picture

- Sender control
- Receiver provides information to sender to help sender make best choices
 - The receiver has access to information not directly available to sender (e.g., SNR)
- Sender also has key information
 - Data to be sent
 - QoS requirements
 - Conditions and historical behaviour
- So sender is the right place to decide
- Can all be achieved with the standard S5066 EOW (Engineering Order Wire) single byte message mechanism
 - Just need to define new messages

Testing Approach

- 3 Rockwell Collins HSM 2050 HF/WBHF Modems
 - Provide modem pair and connecting channel simulator
 - Thanks: Randy Nelson, Mark Jorgenson, & Rockwell Collins
- Send traffic using Isode "HF Tool" and modem drivers
 - Known data patterns, so can measure "bit characteristics"
 - Vary SNR at 1 dB intervals
 - Send using different waveforms and interleavers
- Analyse results to determine effect of varying DPDU size
 - Model STANAG 5066 use of the modem layer
 - MUCH faster than running tests with STANAG 5066 (and as accurate)

Example 1: CCIR Poor +15dB (flat)

2: CCIR Poor + 28db (Short Interleaver Drop-off)

Example 3: CCIR Poor +20dB (broad peak)

Example 4: CCIR Poor +10db (sharp peak)

What is happening as SNR changes

- There is a repeated cycle of graph shape as SNR changes
 - Start with "flat line" (and consider conditions getting poorer)
 - Gradually falls off to form sharper and sharper peak
 - Peak falls further and graph reverts to flat line at next speed down
- Primary graph forms are "flat" and "peak"
 - About evenly split
 - Peaks are mostly "broad"

Implications for Data Rate Change

- The graph shapes explain Trinder/Brown oscillations
 - Oscillation means significantly sub-optimal performance
 - Oscillation will occur on "flat" graphs
 - A consequence of a simple FER (Frame Error Rate) approach
- Interesting implications on optimum DPDU size
 - For flat graph use Max DPDU size (FER close to zero)
 - For "peak" graph need to tune DPDU size
 - Can measure FER and work out optimum DPDU size
 - Simple fixed DPDU size strategy is clearly sub-optimal
 - In slowly varying conditions, may well make sense to keep speed fixed and vary DPDU size to tune performance

AWGN (and Groundwave)

- Picture broadly similar to CCIR Poor
- Similar split between Peak and Flat
- Effect of longer interleaver less marked
- The rate change model applies to Groundwave

WBHF: Example: CCIR Poor +23db 12 kHz

WBHF

- Shapes of graph similar to Narrow Band HF
 - Approximately even split of "flat" and "peak"
- Nothing to indicate the WBHF needs to be handled differently
- DPDU size notes
 - Often shorter DPDU size (200-300 bytes) is optimal
 - Suggests "8th bit" might be best allocated to FSN

Intermediate Term Variation

- Intermediate Term Variation (ITV)
 - Variation of order 10 seconds to 2 minutes
 - Timescale of high relevance to STANAG 5066 transmissions
 - Typical 4 dB Variation for Skywave
- We tried to simulate ITV (see graph above)
 - We are not convinced that the analysis is valid
 - However, we believe effects will be significant
 - This sort of behaviour would explain Trinder/Gillespie
- OTA Measurements are needed
 - In a manner to enable S5066 performance analysis

Interleaver Choice

- Long Interleavers give better performance
 - Well known in the literature and applies to WBHF:
 - "Investigating the Effects of Interleaver Size and FEC Code Constraint Over the-Air for the US MIL-STD-188-110C Appendix D WBHF Waveforms" (John Nieto, Harris, HFIA York 2012)
- Modern Interleavers use tail-biting and so do not have an overhead
 - Provided that you fill the blocks
- For bulk data, use of long interleaver is a no-brainer
 - Use the longest interleaver available
 - Choose a transmit length to fill an exact number of blocks
- For shorter (fixed length) transmissions, there is a more complex decision
 - Need to consider efficiency of block usage before choosing a very long interleaver

Optimizing for High Throughput and Low Latency

- Applications transferring bulk data (e.g., email) remain important
 - Choose speed and DPDU size to optimize for throughput:
 - May have high FER
 - Long transmissions (all or most of 127.5 seconds)
 - Longest possible interleaver
 - Tune exact transmission length to fill an exact number of blocks
- Some applications need optimizing for latency
 - Applications with small PDUs such as XMPP (text chat)
 - Acknowledgments (which may be from bulk transfer in the opposite direction)
 - Choose a slow speed where zero error rate is expected
 - Usually straightforward as actual transmit time will be low

More Complex Application Scenarios

- Medium sized transfers, where low latency is important
 - If the time to transfer is significant, may be a complex trade-off between speed and error rate
 - Slower speed reduces probability of needing retransmission but increases latency
- Last bytes of a large transfer
 - If bulk transfer is being handled at speed with high FER, may make sense to slow down as last bytes (likely retransmissions) are sent

Mixed traffic

- Consider mix of chat and email
- If you give chat complete priority may block email altogether
- If you give email priority will slow chat dramatically
- Intermediate approach may make sense
- QoS extensions to S5066 SIS protocol seem desirable

Using SNR to Select Speed

- It has been argued that SNR can be used to select transmit speed
- Ideal is that receiver will measure SNR during ARQ soft link establishment
 - Typically a couple of seconds
 - Measurements suggest this is sufficient time to get a stable SNR reading
- Key question: how accurately can SNR determine best speed
- Tests done to measure SNR against simulated SNR
 - Rockwell Collins HSM 2050

SNR: AWGN

- Measurements for AWGN look good
- For Groundwave should be able to get to best "flat speed"
- Then use FER to fine tune

SNR: CCIR Poor

- SNR Measurement variation for CCIR Poor higher
- Appears too high a variance to be able to get "best speed" for Skywave
- Should enable quick access to reasonable speed
 - Avoid stepping up through very slow speeds
- Use FER to get to best point

Proposal for a Receiver to Sender Protocol

- Use STANAG 5066 EOW (Engineering Order Wire) one byte messages to enable receiver to share information with sender
- Communicate settings for speed optimized for throughput
 - One EOW message for best speed
 - One EOW message for best DPDU size
 - DPDU size likely to be modified more frequently for fine tuning
- Communicate information on error rate of different speeds
 - The "optimized for throughput speed and up to seven slower speeds
 - Estimated FER for each speed
 - One EOW format can communicate information on two speeds
 - Will share info down to a speed with expected zero error rate
 - This will facilitate a sender choosing between low latency and high throughput

Proposal for a Receiver to Sender Protocol (2 of 2)

- Use a "Probe" approach to investigate faster speeds
 - One above the recommended (optimized throughput) speed
- EOW "Throughput Probe" messages enable sender to indicate:
 - Probe likely or unlikely to succeed (or neutral view)
 - Recommended DPDU size
 - Don't send probe (advice to prevent oscillation)
- Sender options
 - Don't send probe (e.g., if bulk transfer just finishing)
 - Send a short transfer as a probe
- Receiver action after probe
 - Modify recommendations on optimum throughput if probe shows better setting
 - Send "don't probe" if probe does not show a better setting
 - Monitor SNR and suggest probe again if conditions improve

Conclusions and What Next

- We have a good framework for:
 - Extending STANAG 5066 to work over WBHF
 - General improvements to STANAG 5066 relative to current state of the art
- Aim to demonstrate this approach in 2014
 - Isode's Icon 5066 (modem-independent STANAG 5066 server) will support the protocol and approaches described here
- Need OTA Measurements on ITV (Skywave)
 - Isode has tools to enable suitable measurement
 - We expect to use these in OTA tests in 2014
 - We are interested in further OTA tests

Any Questions?

