

High Efficiency HF Power Amplifiers Implications for New Systems

February 13, 2014 David Cripe Rockwell Collins Inc. Advanced Technology Center

319 295-1118

Building trust every day

© 2014 Rockwell Collins. All rights reserved.

Rockwell Collins

Power Amplifier Efficiency and Its Effect on the Communication System

- Efficiency of a system is defined as the ratio of power output to power input
- Inefficiency of a system defines the power dissipated in the PA as a function of power output.
- Use of inefficient power amplification results in:
 - Higher power consumption, shorter battery life, higher energy costs
 - Larger or more amplifier devices
 - More thermal management
 - Reduced reliability of amplifier components
- Introduction of GaN FET and Si MOSFET devices for switching power conversion make application as high efficiency HF PA practical.

Class-D Power Amplifier

- Class-D power amplifier utilizes switching devices operating as switches.
- The drain voltage waveform is an approximate squarewave, and the current a half sine-wave.
- Theoretical efficiency approaches 100%
- Bandwidth is theoretically bound by (half-octave) harmonic filter

Rockwell Collins

Class-E Power Amplifier

- The Class-E power amplifier uses the active device as a switch within a tuned circuit, generating a damped sinusoidal drain voltage waveform.
- While not capable of the same power-per device as is capable from Class-D, it is operable at higher frequencies.
- Instantaneous Bandwidth is theoretically limited to one octave, practical limitation is one half this.

- Class-DE circuit drives devices for less than 180 degree conduction, tunes load inductive so that C_{oss} is resonantly charged to V during device 'off' interval, 'soft-switching'.
- Operates more efficiently than either Class D or E.

Modulating the High-Efficiency PA

- Since these efficient switching power amplifiers are essentially CW amplifiers, reproducing only the phase information of the signal, it is necessary to devise means to efficiently modulate their amplitude.
- Possible techniques include
 - Envelope Elimination and Restoration, (EER)
 - Outphasing (LINC)
 - RF Pulse-Width Modulation

Envelope Elimination and Restoration

- External switching power converter Drain Modulator efficiently provides modulated envelope signal as supply voltage to switching power amplifier.
- Technique is useable at any PA frequency.

EER Limitations

- The bandwidth of the envelope signal can be >10x the bandwidth of the complex baseband signal.
- The PWM switching converter for the Drain Modulator must switch at >10x bandwidth of the envelope signal so that the PWM components can be successfully filtered out.
- The bandwidth of the PWM drive signal to the Drain Modulator must have bandwidth >10x the PWM switch frequency to preserve PWM fidelity.
- For baseband modulation bandwidths much beyond 1% of carrier frequency, the Drain Modulator switch devices must be selected to have comparable Ft as the PA.

Complex Modulation through Outphasing

 Summing the outputs of two, phase-modulated switching power amplifiers permits amplitude modulation by constructive or destructive interference of the two PA phase vectors.

The Effect of Outphasing on Apparent PA Load Impedance

 Mutual load pull from non-isolated amplifiers create load impedances on a clockwise and counter-clockwise semicircle

System Implications of Outphasing Modulation

- Transmitter modulation information is contained in two, phase-modulated drive signals, primarily residing in the first-order Bessel sidebands, requiring flat group-delay through driver circuitry
- The process to convert I-Q baseband information to appropriate phasemodulation is a non-linear operation with empirically-derived predistortion
- Retrofitting an existing transmitter system for a switching power amplifier involves insertion of circuit to extract amplitude, phase and frequency information from exciter RF output for conversion into phase modulated drive signals.

Outphasing Limitations

- Outphasing transmitters may use either an isolated or nonisolated combiner.
- An isolated combiner sends out-of-phase energy to a reject load, so that the PAs operate at a high-efficiency constant load, but combiner reject load, under modulation, dissipates at least as much power as antenna. System efficiency is similar to a Class-B PA.
- A non-isolated combiner modifies PA output through mutual load modulation of out-of-phase current. No power is wasted in a reject load, so efficiency can be nearly as good as an unmodulated PA, at the cost of added non-linearity.
- Non-linear relationship between phase difference and output amplitude dictates pre-distortion circuit in exciter/modulator.

1.5 KW PEP Class D/E Outphasing HF Amplifier

- Eight, COTS SMPS MOSFETs in three-phase Class-D/E LINC configuration
- Demonstrated 94% drain efficiency at 1.5 kW, 10 MHz.
- Demonstrated 89% drain efficiency at 10.0 and 10.01 MHz two-tone test.
- Circuit is quasi-broad-band, operating within a half-octave subband.

1 KW PEP Class D HF Outphasing PA

- Utilizes two, COTS SMPS MOSFET modules in broadband circuit.
- Demonstrated 1.0 kW PEP, 92% drain efficiency, 3 to 20 MHz
- Demonstrated half-octave modulation, 5.0 MHz and 7.1 MHz two-carrier, 1.0 kW PEP at 68% drain efficiency.

Retrofit Outphasing Modulator – Block Diagram

- The process of creating phase-modulated outphasing PA drive signals requires demodulation of amplitude and phase information from the exciter output.
- A more efficient approach is to perform all signal processing on I, Q in the digital domain, and then upconvert.

Suggested Outphasing Modulator – Block Diagram

• Performing all non-linear math and predistortion in DSP is a more efficient, straight-forward process.

Rockwell.

Collins

Implications to Future Development:

- The unique drive signals required have implications on the architecture of exciter/modulator circuitry.
- The PA drive signals for both EER and Outphasing PAs are constant amplitude, phase modulated carriers
- Non-linearity of PAs dictates inclusion of digital pre-distortion
- Signals should remain in the digital domain as long as possible within the transmit signal chain.

Conclusions:

- High efficiency and high bandwidth are attainable at HF using COTS components using switching power amplifier circuits
- A PA retrofit solution to existing systems is possible, though cumbersome.
- A preferred approach to the system design is to perform PA drive signal phase modulation and predistortion in the digital domain before A/D conversion and upconversion in a dedicated exciter/modulator DSP